Course Title	Numerical Methods, Operations Research & Statistics	Semester	IV
Course Code	MVJ19MIS41	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

The purpose of this course is to make students well conversant with numerical methods to solve ordinary differential equations, sampling theory and Operational research emerging in science and engineering.

Module-1	L1,L2, L3	12 Hours
----------	-----------	----------

Numerical Methods-1

Numerical solution of Ordinary Differential Equations of first order and first degree: Modified Euler's method, Taylor's series method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams-Bashforth Method.

Application: Solving Ordinary Differential Equations.

Video Links:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)

3. http://academicearth.org/

Module-2 L1,L2, L3 12 Hours

Numerical Methods-2:

Numerical solution of Ordinary Differential Equations of second order: Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams Bashforth Method.

Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics.

Application: Hanging chain problem.

Video Links:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/

Module-3	L1.L2. L3 12 Hours
Operations Research-1	
Introduction to Linear Programming Problem (LPP): Prototype exa	mple, Assumptions of LPP,
Formulation of LPP and Graphical method various examples. The simple	plex method, Big M method,
Two phase method and dual simplex method.	
Application: Graphical solution procedure.	
Video Links.	
1. http://nptel.ac.in/courses.php?disciplineID=111	
2. http://www.class-central.com/subject/math(MOOCs)	
3. http://academicearth.org/	
Module-4	L1,L2, L3 12 Hours
Operations Research-2	
The transportation problem: Initial Basic Feasible Solution (IBFS) b method, Matrix Minima Method, Vogel's Approximation Method. Game Theory: The formulation of two persons, zero sum games; saddle principle Solving simple games a prototype gyample Games with mix	by North West Corner Rule e point, maxmin and minmax
principle, Solving simple games- a prototype example, Games with mix	ed strategies.
Application: Transportation problem.	
Video Links:	
1. http://nptel.ac.in/courses.php?disciplineID=111	
2. http://www.class-central.com/subject/math(MOOCs)	
3. http://academicearth.org/	
Module-5	L1,L2, L3 12 Hours
Statistical Methods Correlation and Regression: Correlation, Regression coefficients, line of	f regression problems.
Curve fitting: Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx$ of least squares.	$x + c$, $y = ae^{bx}$ by the method
Application: Finding the best fit between two variables.	
Video Links:	
1. http://nptel.ac.in/courses.php?disciplineID=111	
2. http://www.class-central.com/subject/math(MOOCs)	
3. http://academicearth.org/	
Course outcomes:	
CO1 Solve first and second order ordinary differential equation arisingle step numerical methods.	ising in flow problems using
Determine the extremals of functional and solve the simple pro-	blems of the
CO2 Calculus of variations.	

CO3 Solve the mathematical formulation of linear programming problem.

CO4 Solve the applications of transport problems and theory of games.

CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for a
COS	set of statistical data.

Refere	nce Books:
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	S. D. Sharma, "Operations Research", Kedar Nath and Ram Nath Publishers, Seventh Revised Edition 2014.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition, 2014.
4.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
5.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8 th Edition
6.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition, 2014.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	2	0	3	0	0	0	0	0	0	0	0
CO3	3	3	0	2	0	0	0	0	0	0	0	0
CO4	2	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	0	1

Course Title	Design & Analysis of Algorithm	Semester	IV
Course Code	MVJ19IS42	CIE	50
Total No. of Contact Hours	60 L:T:P::40:0:20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hours

- Explain various computational problem-solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis

Module-1	L1,L2, L3	12 Hours
Introduction to Algorithms: The role of algorithms in computing, Growth of	of functions, A	Asymptotic
notations, Designing and Analysing algorithms-an Introduction using insertion	sort. Review o	n the Math

needed for algorithm design and analysis.

Laboratory Sessions/ Experimental learning:

• Implement insertion sort and test its efficiency

Applications: Develop a realistic model for the input to the program. Analyse the unknown quantities, assuming the modelled input. Calculate the total running time by multiplying the time by the frequency for each operation, then adding all the products.

Video link / Additional online information :

https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.htm

Module-2	L1,L2, L3	12 Hours
Divide and Conquer: Solving recurrences - The Substitution method, Recur	rrence Tree n	nethod and
Master's method, Multiplying large integers, Binary Search, Sorting [Merge	e Sort and Q	uick Sort],
Selection in linear time [Expected and Worst-case], Strassen's algorithm for M	atrix Multiplie	cation, The
maximum sub-array problem.		

Laboratory Sessions/ Experimental learning:

• Implement maximum sub array algorithm and test their correctness and efficiency

Applications: Closest Pair of Points, Strassen's Multiplication, Karatsuba Algorithm, Cooley-Tukey Algorithm

Video link / Additional online information :

 $https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_divide_conquer_htm$

Module-3	L1.L2. L3	12 Hours
Greedy Algorithms: Characteristics of Greedy algorithms, The problem of algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack prob The accounting method, The potential method.	making chang n and Prim's olem Amortized	ge, Greedy Algorithm, d Analysis:
Laboratory Sessions/ Experimental learning:		
• Implement Knapsack Algorithm using Greedy method.		
Applications: Dijkstra's Algorithm, Google Map		
Video link / Additional online information : https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_ greedy_method_htm	_analysis_of_a	lgorithms_
Module-4	L1,L2, L3	12 Hours
Dynamic Programming: Calculating the binomial co-efficient, the problem Knapsack problem, Chained matrix multiplication, Finding the shortest paths in Dynamic programming algorithms using recursion and memory functions.	of making ch n a Graph, Ref	ange, The ormulating
Laboratory Sessions/ Experimental learning:		
• Implement single source shortest path algorithm.		
Applications: Logistic/Transportation Problems		
Video link / Additional online information : https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_ dynamic_programming_htm	_analysis_of_a	lgorithms_
Module-5	L1,L2, L3	12 Hours
Backtracking: N-Queen's Problem -Graph colouring.		
Branch and Bound: Assignment Problem - Traveling Salesman Problem. Comp NP-complete and NP-hard.	outability classe	es – P, NP,
Laboratory Sessions/ Experimental learning:		
Implement graph colouring Problem		
Applications: Electrical Engineering, Robotics, Artificial Intelligence, Materi Puzzles	als Engineerin	g, Solving
Video link / Additional online information : https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_ p_np_class_htm	_analysis_of_a	lgorithms_

r	
Course	outcomes:
CO1	Analyze the correctness of algorithms using induction and loop invariants.
CO2	Construct algorithms using design paradigms like divide and conquer, greedy and dynamic
02	programming for a given problem.
CO3	Analyze how the performance of an algorithm is affected based on the choice of data structures
005	the algorithm uses.
CO4	Construct graph-based algorithms to solve engineering problems.
CO5	Outline P and NP problems with the help of backtracking and branch and bound techniques

Referen	nce Books:
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.Pearson.
2.	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press
3.	Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms, Third edition, PHI, 2010.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	0	0	0	0	2	0	0
CO2	3	3	3	2	3	0	0	0	0	2	0	0
CO3	3	3	2	2	3	0	0	0	0	2	0	0
CO4	3	3	2	2	3	0	0	0	0	2	0	0
CO5	3	3	3	2	3	0	0	0	0	2	0	0

Course Title	Microcontroller & Embedded Systems	Semester	IV
Course Code	MVJ19IS43	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

- Explain the fundamentals of ARM based system, basic hardware components, selection methods and attributes of an ARM Controller.
- Program ARM controller using the various instructions.
- Explain the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller.
- Identify the Embedded System Design applications.
- Explain the real time operating system for the embedded system design.

Module-1	L1,L2, L3	12 Hours

Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.

ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions

Laboratory Sessions/ Experimental learning:

- ARM Processor and Sample programs using Simulator.
- Comparison of Microprocessor and Microcontroller hardware Model
- Comparing the Microprocessor and Microcontroller Software Model

Applications: ARM Design

Video link / Additional online information :

https://developer.arm.com/architectures/platform-design/embedded-systems

https://www.youtube.com/watch?v=JPfG0UQd3x4

https://bnmbiw.wordpress.com/2013/01/27/chapter-1-arm-embedded-systems/

Module-2

L1,L2, L3 12 Hours

Introduction to the ARM Instruction Set : Data Processing Instructions , Programme Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants

ARM programming using Assembly language: Writing Assembly code, Profiling and cycle counting, instruction scheduling

Laboratory Sessions/ Experimental learning:

• ARM assembly language programming

Applications: Writing Assembly code

Video link / Additional online information : https://iitd-plos.github.io/col718/ref/arm-instructionset.pdf https://www.slideshare.net/MathivananNatarajan/arm-instruction-set-60665439 https://www.scribd.com/document/401460874/ARM-Architecture

Module-3 L1,L2, L3 12	2 Hours

Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt handling Schemes

Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details of ARM MMU

Laboratory Sessions/ Experimental learning:

- Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 of ARM Processor.
- Use of Software Interrupt SWI instruction in programming.
- Calculating physical memory address from logical address.

Applications: Estimation of CPU & Memory Performance

Video link / Additional online information :

https://www2.seas.gwu.edu/~bhagiweb/cs211/lectures/cache1.pdf

https://developer.arm.com/docs/den0024/a/the-memory-management-unit

https://www.youtube.com/watch?v=IyRNk5SMEpM

Module-4L1,L2, L312 Hours	3 12 Hours
---------------------------	------------

Embedded System Components: Embedded Vs General computing system, History of embedded systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems

Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (on board and external types), Embedded firmware, Other system components.

Laboratory Sessions/ Experimental learning:

• Mini project

Case Study: Digital Clock, Battery operated Smartcard Reader

Applications: Displaying digits on a 7-segment LED interface

Video link / Additional online information :

https://www.slideshare.net/MoeMoeMyint/introduction-to-embedded-system-chapter-2-4th-portion https://shrishailbhat.com/2018/02/28/arm-microcontroller-embedded-systems-embedded-system-

components/

https://mrcet.com/downloads/digital_notes/ECE/IV%20Year/EMBEDDED%20SYSTEMS%20DESIGN.pdf

vioaule-5	

L1,L2, L3 12 Hours

Real Time Operating System (RTOS) based Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS

Case Study: Automated Meter Reading System (AMR) and Digital Camera, Real time concepts

Applications: Modern electronic systems

Video link / Additional online information :

https://www.geeksforgeeks.org/mutex-lock-for-linux-thread-synchronization/ http://digitalthinkerhelp.com/real-time-operating-system-rtos-examples-applications-functions/

Course o	utcomes:
CO1	Describe the architectural features and instructions of ARM microcontroller
CO2	Develop Assembly Programs in ARM for Embedded applications.
CO3	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller
CO4	Interface external devices and I/O with ARM microcontroller.
CO5	Demonstrate the need of real time operating system for embedded system applications
<u></u>	•
Referenc	e Books:
1.	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan Kaufman publishers, 2008.
2.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition.
3.	RaghunandanG.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication, 2019
4.	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.
5	Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.

6

Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	0	0	0	0	0	0	0	0
CO2	3	2	1	0	0	0	0	0	0	0	0	0
CO3	0	0	2	3	0	0	0	0	0	0	0	0
CO4	0	0	2	3	0	0	0	0	0	0	0	0
CO5	0	0	3	0	0	0	0	0	0	0	0	0

Course Title	Object Oriented Programming Concepts	Semester	IV
Course Code	MVJ19IS44	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

- Learn fundamental features of object-oriented language and JAVA
- Design, write, debug, run C++ and Java Programs
- Develop console -based applications using C++
- Develop console & windows applications using Java.
- Introduce event driven Graphical User Interface (GUI) programming using applets and swings

	Module-1		L1,L2, L3	12 Hours
Overview of OOPs Principles	Introduction to classes & objects	Instantiatin	a and Using C	laccae with

Overview of OOPs Principles , Introduction to classes & objects , Instantiating and Using Classes with objects , Data Members , Member Functions , this Pointer , Constructor & Destructor , Control, Structures , Arrays in C++.

Laboratory Sessions/ Experimental learning:

• Introduction to OOP lab (Simple C program) - Classes and Objects.

Applications: Building a secure program using data hiding concept . Using same function or same operator having different purposes

Video link / Additional online information :

http://ee402.eeng.dcu.ie/introduction/chapter-1---introduction-to-object-oriented-programming https://introprogramming.info/english-intro-csharp-book/read-online/chapter-20-object-orientedprogramming-principles/

	Module-2		L1,L2, L3	12 Hours
Derived Class and Pass Class	Darived Class Constructors	Overriding Me	mbor Eunotio	na Dublia

Derived Class and Base Class, Derived Class Constructors, Overriding Member Functions, Public and Private Inheritance, Types of Inheritance: Single, Multi-Level, Multiple, Hierarchical and Hybrid, Virtual Base Classes, Abstract Classes.

Laboratory Sessions/ Experimental learning:

• Programs using constructor, inheritance

Applications: Reuse of existing class to derive a new class such that the redundant code is eliminated, which saves time and cost of program.

Video link / Additional online information :

https://isocpp.org/wiki/faq/private-inheritance

https://www.programiz.com/cpp-programming/public-protected-private-inheritance

Module-3

https://balututorial.com/inheritance-in-c-with-example-program/

L1,L2, L3 12 Hours

Pointers, this Pointer, Pointers to Objects and Derived Classes, Function Overloading, Operator Overloading, virtual function,

Friend Function , Static Function ,Streams: Stream Classes - Unformatted I/O Operations - Formatted Console I/O Operation.

Laboratory Sessions/ Experimental learning:

• Program using function overloading, friend function

Applications: Dynamic linkage or late binding on the function

Video link / Additional online information :

https://www.cet.edu.in/noticefiles/285_OOPS%20lecture%20notes%20Complete.pdf

https://www.programiz.com/cpp-programming/friend-function-class

https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp6_Inheritance.html

Module-4	L1,L2, L3	12 Hours
Java Basics , Classes and Objects , Inheritance, Interfaces , Abstract Class	, packages ,	Exception
handling, Type casting		

Laboratory Sessions/ Experimental learning:

• Programs using Java class/object, Package, interface

Applications: Partial abstraction with abstract classes. Total abstraction with interfaces

Video link / Additional online information :

https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java/

Module-5

https://www.edureka.co/blog/object-oriented-programming/

L1,L2, L3	12 Hours

Garbage Collections, Java Utility Classes, I/O Classes and Interfaces, Multithreading, Java swing basics

Laboratory Sessions/ Experimental learning:

• Programs using thread concept, Java swing

Applications: Partitioning the work of a project based on thread/objects.

Video link / Additional online information : <u>https://www.studytonight.com/java/garbage-collection.php</u> <u>https://beginnersbook.com/2013/05/java-interface/</u> https://www.javatpoint.com/java-swing

Course	e outcomes:
CO1	Design class and objects for real world scenario.
CO2	Apply Inheritance concept to obtain code reusability.
CO3	Create applications to manipulate data from files using functions and streams
CO4	Develop console applications using Java OOPS.
CO5	Develop GUI application using Java library classes.

Refere	nce Books:
1.	E Balagurusamy, Object Oriented Programming with C++, Tata McGraw Hill Publishing,
	New Delhi, 2011
2	Sourav Sahay, Object Oriented Programming with C++ , 2nd Ed, Oxford University
Ζ.	Press,2006
3.	Robert Lafore, Object Oriented Programming in C++, Galgotia Publication, 2010.
Δ	Herbert Schildt, Java: The Complete Reference, Eleventh Edition, McGraw-Hill
7.	Education,2018
5.	D.T. Editorial Services ,Java 8 Programming Black Book , second edition, Dreamtech
	Press.2015

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	2	0	3	0	0	0	0	0	0	0
CO2	0	2	2	0	3	0	0	0	0	0	0	0
CO3	0	2	1	0	3	0	0	0	0	0	0	0
CO4	0	1	2	0	3	0	0	0	0	0	0	0
CO5	0	1	2	0	3	0	0	0	0	0	0	0

Course Title	Operating System	Semester	IV
Course Code	MVJ19IS45	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

- Provide an understanding on the various components of an Operating System •
- The course focuses on fundamental problems and optimal solutions for resource management in operating systems such as process, disk and memory management
- The course will introduce design principles and trade-offs in the design of Operating Systems.
- Explain inter-process communication.
- The course will also introduce the interface for interacting with a contemporary Operating system such as Linux.

Module-1	L1,L2, L3	12 Hours

Introduction to operating systems, What operating systems do; Computer System organization; Computer System architecture; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Operating System Services; User -Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines. Process Management Process concept; Process scheduling; Operations on processes.

Case study:-IPC System

Laboratory Sessions/ Experimental learning:

Implementing process scheduling algorithms •

Applications: Computer system.

Video link / Additional online information: https://nptel.ac.in/courses/106108101/

Module-2	L1,L2, L3	12 Hours
i-threaded Programming: Overview: Multithreading models: Thread Li	braries. Three	ading issues

Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Thread Process Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors. CPU Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread scheduling; Multiple-processor scheduling

Laboratory Sessions/ Experimental learning:

Implementing process scheduling algorithms •

Applications: spell-check, response to keyboard, formatting Video link / Additional online information :

https://www.smartzworld.com/notes/operating_systems_pdf_vtu_os/	
Male Le 2	
Deadlocks: System model; Deadlock characterization; Methods for hand prevention; Deadlock avoidance; Deadlock detection and recovery from dea Memory Management: Background; Swapping; Contiguous memory alloca page table; Segmentation.	LI,L2, L3 12 Hours ling deadlocks; Deadlock adlock. ation; Paging; Structure of
 CASE STUDY: ARM architecture Laboratory Sessions/ Experimental learning: Implement Bankers algorithm for Dead Lock Avoidance 	
Applications: Traffic gridlock	
Video link / Additional online information :	
https://www.smartzworld.com/notes/operating-systems-pdf-vtu-os/	
Module-4	L1,L2, L3 12 Hours
Virtual Memory Management: Background; Demand paging; Copy-on- Allocation of frames; Thrashing. File System, File concept; Access met structure; File system mounting; File sharing; Protection; Case study's: NFS and WAFL File system	write; Page replacement; hods; Directory and disk
Laboratory Sessions/ Experimental learning:Implement all page replacement algorithms	
Applications: scientific applications	
Video link / Additional online information :	
https://www.smartzworld.com/notes/operating-systems-pdf-vtu-os/	
Module-5	L1,L2, L3 12 Hours
Secondary Storage Structures, Protection: Mass storage structures; Disk st Disk scheduling; Disk management; Swap space management. Protection Principles of protection, Domain of protection, Access matrix, Impleme Access control, Revocation of access rights, Capability- Based systems. Linux overview – Kernel Architecture – Process, memory, file and I/O mat communication and synchronization – Security. Case study of UNIX.	tructure; Disk attachment; ion: Goals of protection, entation of access matrix, anagement – Inter Process
Laboratory Sessions/ Experimental learning:Implementing disk scheduling algorithm	
Applications: NAS, Hard disk	
Video link / Additional online information :	
https://nptel.ac.in/courses/106108101/	

outcomes.
Recognize the important computer system resources and the role of operating system in their
management policies and algorithms.
Understand various scheduling algorithms.
Familiar with principles of deadlock and its prevention. To understand the concepts of file
system interface.
Identify use and valuate the storage management policies with respect to different storage
Management technologies
Identify the need to create the special purpose operating system.

Reference Books:

1.	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, Ninth
	Edition, John Wiley & Sons (ASIA) Pvt. Ltd, 2005.
2.	A.S.Tanenbaum, Operating System : Design and Implementation, Prentice Hall of India, 1989.
3.	J.L.Galvin and A.Silberschatz, Operating System Concepts, Addison-Wesley, 1998

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	2	2	0	0	2	0	2	2	0	3
CO2	0	3	2	2	0	0	2	0	2	2	0	2
CO3	0	3	2	2	0	0	2	0	2	2	0	2
CO4	0	2	2	2	0	0	2	0	2	2	0	3
CO5	0	3	2	2	0	0	2	0	2	2	0	2

Course Title	Theory of Computation	Semester	IV
Course Code	MVJ19IS46	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

- Acquire knowledge of Automata Theory as the basis of all computer science languages design
- Understand the concept of Context Free Grammars and Languages
- Learn the tools used for Lexical and Syntax analysis
- Acquire knowledge of optimization
- Enrich the knowledge in various phases of compiler ant its use

Module-1 L1,L2, L3 12 Hours

Introduction - Basic Mathematical Notation and techniques - Finite State systems - Basic Definitions - Finite Automaton - DFA & NDFA - Regular Languages- Regular Expression - Equivalence of NFA and DFA - Equivalence of NDFAs with and without input moves - Equivalence of finite Automaton and regular expressions - Minimization of DFA.

Laboratory Sessions/ Experimental learning:

• Problems on DFA/NFA, regular expression

Applications: Text processing, compilers, and hardware design.Recognizing the pattern using regular expressions.

Video link / Additional online information : <u>https://www.youtube.com/watch?v=NeI1oOFlVtU</u> <u>https://www.youtube.com/watch?v=_Z3XdgpE6_4</u> <u>https://www.geeksforgeeks.org/regular-languages-and-finite-automata-gq/</u>

Module-2	L1,L2, L3	12 Hours
Grammar Introduction - Types of Grammar - Context Free Grammars and	Languages - I	Derivations

Grammar Introduction - Types of Grammar - Context Free Grammars and Languages - Derivations and Languages - Ambiguity - Relationship between derivation and derivation trees - Simplification of CFG - Elimination of Useless symbols - Unit productions - Null productions - Pushdown Automata – Definitions - Moves - Instantaneous descriptions - Deterministic pushdown automata - Equivalence of Pushdown automata.

Laboratory Sessions/ Experimental learning:

• Problems on CFG, pushdown automata

Applications: CFGs can be used in programming languages, to study human language and in Artificial Intelligence

Video link / Additional online information : <u>https://www.youtube.com/watch?v=ocLRMFr0TMI</u> <u>https://www.geeksforgeeks.org/ambiguity-in-context-free-grammar-and-context-free-languages/</u> <u>https://www.cis.upenn.edu/~jean/gbooks/tcbookpdf2.pdf</u>

Module-3										L1,L2	, L3	12	Hours	;	
1	. •		C	• 1 •	701	•	C 1	0	• 1	. •	. 1	T	1	C .1	

Introduction to Compiling - The grouping of phases - Compiler construction tools. The role of the lexical analyzer - Input buffering - Specification of tokens - Recognition of tokens - A language for specifying lexical analyzer

Laboratory Sessions/ Experimental learning:

• Problems on lexical analysis

Applications: Designing lexical analyzer of a compiler.

Video link / Additional online information : http://www.vssut.ac.in/lecture_notes/lecture1422914957.pdf https://rmd.ac.in/dept/cse/notes/6/CD/unit1.pdf

	Module-		L1,L2, L3	12 Hours	
untax Analysis	The role of the parser	Context free grammars	Writing	a grammar T	on down

Syntax Analysis - The role of the parser - Context-free grammars - Writing a grammar - Top-down parsing - Bottom-up Parsing - SR parsers - LR parsers - Constructing an SLR (1) parsing table. Type checking - Type Systems - Specification of a simple type checker.

Laboratory Sessions/ Experimental learning:

• Problems on syntax analysis, Construction of parsing table

Applications: Designing the parsing phase of a compiler (Syntax Analysis).

Video link / Additional online information :

https://www.tutorialspoint.com/compiler_design/compiler_design_bottom_up_parser.htm https://www.geeksforgeeks.org/bottom-up-or-shift-reduce-parsers-set-2/ https://www.includehelp.com/compiler_design/introduction_to_bottom_up_parser_aspy

 $\underline{https://www.includehelp.com/compiler-design/introduction-to-bottom-up-parser.aspx}$

	Modul		L1,L2, L3	12 Hours	
0.000	Declarations	A agionmont statements	Declar	unnagiona Co	

Intermediate languages - Declarations - Assignment statements - Boolean expressions - Case statements -Backpatching - Procedure calls - Issues in the design of a code generator - The target machine - Run-time storage - management - Basic blocks and flow graphs - Next-use information -A simple code – generator - Register allocation and assignment - The dag representation of basic blocks - Generating code from DAGs Laboratory Sessions/ Experimental learning:

• Problems on DAG representation

Applications: Generation of code for boolean expressions

Video link / Additional online information :

https://lecturenotes.in/notes/18736-note-for-compiler-design-cd-by-bineeth-kuriakose/13 http://www.vssut.ac.in/lecture_notes/lecture1422914957.pdf

Course	e outcomes:
CO1	Construct finite automata for given pattern and find its equivalent regular expressions.
CO2	Design and simplify context free grammar and find equivalent pushdown automata for given
02	language.
CO3	Generate the machine code considering the functionalities involved in different phases of the
005	compilation process.
CO4	Implement the parsing techniques including Bottom-up and Top-down parsing for the given
04	programming construct described in Context Free Grammar
CO5	Design code generators for the specified machine and apply the various optimization
	techniques to speed up the compilation time.

Refere	nce Books:
1	Hopcroft J E, Motwani R and Ullman J D, Introduction to Automata Theory, Languages and
1.	Computations, Second Edition, Pearson Education, 2012.
2	Alfred V Aho, Ravi Sethi Jeffrey D Ullman, Compilers- Principles, Techniques, and Tools,
2.	Third Edition, Pearson Education Asia, 2009.
3	Steven S Muchnick, Advanced Compiler Design and Implementation, Second Edition,
5	Morgan Kaufmann Pulishers, 2008.
4	Raghavan V, Principles of Compiler Design, Third Edition, Tata Mc-Graw Hill Education
4	Pvt. Ltd., New Delhi, 2009

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	0	2	0	0	0	0	0	0	0	0	2			
CO2	2	1	2	0	0	0	0	0	0	0	0	0			
CO3	1	0	2	0	0	0	0	0	0	0	0	2			
CO4	1	0	2	0	0	0	0	0	0	0	0	2			
CO5	1	0	2	0	0	0	0	0	0	0	0	2			

Course Title	Design & Analysis of Algorithm Lab	Semester	IV
Course Code	MVJ19ISL47	CIE	50
Total No. of Contact Hours	40 L: T: P: 0: 0: 40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	2	Exam. Duration	3 Hours

- Understanding the basic algorithm techniques
- Solve different algorithmic technique problems
- Synthesize the efficiency of the algorithms in common engineering design situation

Sl No	Experiment Name	RBT Level	Hours
1	Implementation of Binary Search Trees	L3	4
2	Implementation of merge and quick sort algorithms and test their	L3	4
	correctness and efficiency		
3	Implementation of Floyd-Warshall Algorithm and test their	L3	4
	efficiency		
4	Implementation of 0/1 Knapsack problem using	L3	4
	(a) Dynamic Programming method		
	(b)Greedy method.		
5	(a) Implementation of all-Pairs Shortest Paths problem	L3	4
	(b) Implementation of Travelling Sales Person problem		
6	Implementation and analysis of running time of eight-queen	L3	4
	problem		
7	Implementation of insertion and topological sorting and test their	L3	4
	efficiency.		
8	Program to find a subset of a given set $S = {S1, S2,,Sn}$ of <i>n</i>	L3	4
	positive integers		
9	Program to find all Hamiltonian Cycles in a connected undirected	L3	4
	Graph		
10	Mini Project /Case Presentation	L3	4
Course	outcomes:		
CO1	Analyze the complexities of various problems		
CO2	Apply different algorithmic design paradigms and methods of analysis		
CO3	Analyzing the different complexity for different algorithmic technique	S	

CO4	Implement various algorithms in a high-level language
CO5	Compare the performance of different algorithms for same problem

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	3	0	0	0	0	2	0	0	
CO2	3	3	3	2	3	0	0	0	0	2	0	0	
CO3	3	3	2	2	3	0	0	0	0	2	0	0	
CO4	3	3	2	2	3	0	0	0	0	2	0	0	
CO5	3	3	3	2	3	0	0	0	0	2	0	0	

Course Title	Microcontroller & Embedded Systems Lab	Semester	IV
Course Code	MVJ19ISL48	CIE	50
Total No. of Contact Hours	40 L: T: P: 0: 0: 40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	2	Exam. Duration	3 Hours

- Develop Assembly language programs for any real time scenario using Arm Microcontroller
- Demonstrate various real time application using ARM Microcontroller hardware.

Sl No	Experiment Name	RBT Level	Hours	
1	Write a program to find the sum of first 10 integer numbers.	L3	2	
2	Write a program to find factorial of a number.	3	3	
3	Write a program to add an array of 16 bit numbers and store the 32	3	3	
	bit result in internal RAM			
4	Write a program to find the square of a number (1 to 10) using look-	3	3	
	up table.			
5	Write a program to find the largest/smallest number in an array of	3	3	
	32 numbers			
6	Write a program to arrange a series of 32 bit numbers in	3	3	
	ascending/descending order			
7	Write a program to count the number of ones and zeros in two	3	3	
	consecutive memory locations			
8	Write an ARM assembly program that checks if a 32-bit number is a	3	3	
	palindrome. Assume that the input is available in r 3. The program			
	should set r 4 to 1 if it is a palindrome, otherwise r 4 should have 0.			
	A palindrome is a number which is the same when read from both			
	sides. For example, 1001 is a 4 bit palindrome.			
9	Display "Hello World" message using Internal UART	3	3	
10	Interface and Control a DC Motor	3	3	
11	Interface a Stepper motor and rotate it in clockwise and anti-	3	3	
	clockwise direction			
12	Interface a DAC and generate Triangular and Square waveforms.	3	3	
13	Display the Hex digits 0 to F on a 7-segment LED interface, with an	3	3	
	appropriate delay in Between			
STUDY EXPERIMENT		L3	2	
Interfac	e a 4x4 keyboard and display the key code on an I CD			
lineride				
	1			

Course outcomes:						
CO1	Describe the internal architecture of microcontroller systems, including counters, timers, ports, and memory					
CO2	Develop programs using ARM7TDMI/LPC2148.					
CO3	Test programs using ARM7TDMI/LPC2148					
CO4	Conduct experiments on an ARM7TDMI/LPC2148 evaluation board using evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.					
CO5	Interface a microcontroller system to user controls and other electronic systems.					

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	0	0	0	0	0	0	0	0
CO2	3	2	1	0	0	0	0	0	0	0	0	0
CO3	0	0	2	3	0	0	0	0	0	0	0	0
CO4	0	0	2	3	0	0	0	0	0	0	0	0
CO5	0	0	3	0	0	0	0	0	0	0	0	0